Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Hum Neurosci ; 16: 991382, 2022.
Article in English | MEDLINE | ID: covidwho-2262461

ABSTRACT

Introduction: SARS-CoV-2 virus infection causes a dysbalanced and severe inflammatory response, including hypercytokinemia and immunodepression. Systemic inflammation triggered by a viral infection can potentially cause vascular damage, which may lead to cardiovascular and neurovascular events. Research question: The aim was to investigate whether CNS complications are related to COVID-19. Materials and methods: We examined 21 patients suffering from stroke and intracranial hemorrhage (ICH) and 9 (43%) of them were male. We compared relative frequencies using Fisher's exact test. As we had few observations and many variables, we used principal component analysis (PCA) to reduce data dimensionality. We trained a linear support vector machine (SVM) on the first two PCs of the laboratory data to predict COVID-19. Results: Patients suffering from stroke had either hypertension or SARS-CoV-2 infection, but seldom both (OR = 0.05, p = 0.0075). The presence of SARS-CoV-2 infection was strongly associated with the logarithm of CRP (p = 1.4e-07) and with D-DIMER (p = 1.6e-05) and moderately with PT (p = 0.0024). SARS-CoV-2 infection was not related to any other factor. CRP, D-DIMER, PT, and INR were all related to each other (R 2 ranging from 0.19 to 0.52, p ranging from 0.012 to < 0.0001). The first two PCs covered 96% of the variance in the four variables. Using them, perfect linear discrimination between patients suffering from COVID-19 and other patients could be achieved. Discussion and conclusion: SARS-CoV-2 infection causes systemic inflammation, which is suggested as a predictor of the severe course of ICH. SARS-CoV-2 infection is an additional risk factor for vascular complications.

2.
Curr Oncol ; 30(1): 358-369, 2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2235896

ABSTRACT

Up to 40% of neuro-oncological patients already deal with high levels of distress under conventional circumstances. Due to COVID-19, pandemic hospital visitor rules have been restricted and patients did not receive the same level of supporting caregiver network as before COVID. The aim of the present study was to analyse the impact of the COVID pandemic on the prevalence of distress, anxiety and depression in neuro-oncological patients. Patients admitted for brain tumour surgery were screened regarding distress, anxiety and depression. Furthermore, aspects of patients' quality of life and clinical data were covered. Retrospectively available data of patients treated pre-pandemic (group A) and throughout the COVID-19 pandemic (group B) were statistically analysed using Chi-square tests and independent-sample t-tests, and regression analysis was performed to support statistical findings. Data from 110 patients were available. In all, 48 patients were included pre-COVID-19 and 62 during the COVID-19 pandemic. The authors found no significant difference between pre-COVID-19 prevalence of distress (p = 0.112), anxiety (p = 0.385) or depression (p = 0.084). Regression analyses additionally did not show any significant influence of COVID-19 on the above analysed parameter. Analyses of our cohort's data could not underline the negative impact of COVID-19 restrictions, shortcuts of professional and remodelled caregiver support on psycho-oncological outcomes.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Quality of Life , Retrospective Studies , Anxiety/epidemiology , Anxiety/etiology
3.
Pathogens ; 11(6)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1911498

ABSTRACT

BACKGROUND: SARS-CoV virus infection results in a dysbalanced and severe inflammatory response with hypercytokinemia and immunodepression. Viral infection triggers systemic inflammation and the virus itself can potentially cause vascular damage, including blood-brain barrier (BBB) disruption and alterations in the coagulation system, which may result in cardiovascular and neurovascular events. Here, we review the literature and present a case of COVID-19 infection leading to an aneurysmal subarachnoid haemorrhage (aSAH). CASE DESCRIPTION: A 61-year-old woman presented with dyspnea, cough, and fever. She had a history of hypertension and was overweight with a body mass-index of 34. There was no history of subarachnoid hemorrhage in the family. Due to low oxygen saturation (89%) she was admitted into ICU. A chest CT showed a typical picture of COVID-19 pneumonia. The PCR-based test of an oropharyngeal swab was COVID-19-positive. In addition to oxygen support she was prescribed with favipiravir and hydroxychloroquine. She experienced a sudden headache and lost consciousness on the second day. Computer tomography (CT) with CT-angiography revealed a subarachnoid haemorrhage in the basal cisterns from a ruptured anterior communicating artery aneurysm. The aneurysm was clipped microsurgically through a left-sided standard pterional approach and the patient was admitted again to the intensive care unit for further intensive medical treatment. Post-operatively, the patient showed slight motor dysphasia. No other neurological deficits. CONCLUSION: Systemic inflammation and ventilator support-associated blood pressure fluctuations may trigger aneurysmal subarachnoid haemorrhage secondary to COVID-19 infection. COVID-19 infection could be considered as one of the possible risk factors leading to instability and rupture of intracranial aneurysm.

4.
Pathogens ; 11(6):617, 2022.
Article in English | MDPI | ID: covidwho-1857347

ABSTRACT

Background: SARS-CoV virus infection results in a dysbalanced and severe inflammatory response with hypercytokinemia and immunodepression. Viral infection triggers systemic inflammation and the virus itself can potentially cause vascular damage, including blood–brain barrier (BBB) disruption and alterations in the coagulation system, which may result in cardiovascular and neurovascular events. Here, we review the literature and present a case of COVID-19 infection leading to an aneurysmal subarachnoid haemorrhage (aSAH). Case Description: A 61-year-old woman presented with dyspnea, cough, and fever. She had a history of hypertension and was overweight with a body mass-index of 34. There was no history of subarachnoid hemorrhage in the family. Due to low oxygen saturation (89%) she was admitted into ICU. A chest CT showed a typical picture of COVID-19 pneumonia. The PCR-based test of an oropharyngeal swab was COVID-19-positive. In addition to oxygen support she was prescribed with favipiravir and hydroxychloroquine. She experienced a sudden headache and lost consciousness on the second day. Computer tomography (CT) with CT-angiography revealed a subarachnoid haemorrhage in the basal cisterns from a ruptured anterior communicating artery aneurysm. The aneurysm was clipped microsurgically through a left-sided standard pterional approach and the patient was admitted again to the intensive care unit for further intensive medical treatment. Post-operatively, the patient showed slight motor dysphasia. No other neurological deficits. Conclusion: Systemic inflammation and ventilator support-associated blood pressure fluctuations may trigger aneurysmal subarachnoid haemorrhage secondary to COVID-19 infection. COVID-19 infection could be considered as one of the possible risk factors leading to instability and rupture of intracranial aneurysm.

5.
Pathogens ; 10(1)2021 Jan 11.
Article in English | MEDLINE | ID: covidwho-1021994

ABSTRACT

Coronavirus disease 2019 (COVID-19), with an increasing number of deaths worldwide, has created a tragic global health and economic emergency. The disease, caused by severe acute respiratory syndrome coronavirus 2019 (SARS-CoV-19), is a multi-system inflammatory disease with many of COVID-19-positive patients requiring intensive medical care due to multi-organ failures. Biomarkers to reliably predict the patient's clinical cause of the virus infection, ideally, to be applied in point of care testing or through routine diagnostic approaches, are highly needed. We aimed to probe if routinely assessed clinical lab values can predict the severity of the COVID-19 course. Therefore, we have retrospectively analyzed on admission laboratory findings in 224 consecutive patients from four hospitals and show that systemic immune inflammation index (SII) is a potent marker for predicting the requirement for invasive ventilator support and for worse clinical outcome of the infected patient. Patients' survival and severity of SARS-CoV-2 infection could reliably be predicted at admission by calculating the systemic inflammatory index of individual blood values. We advocate this approach to be a feasible and easy-to-implement assay that may be particularly useful to improve patient management during high influx crisis. We believe with this work to contribute to improving infrastructure availability and case management associated with COVID-19 pandemic hurdles.

7.
F1000Res ; 9: 660, 2020.
Article in English | MEDLINE | ID: covidwho-826190

ABSTRACT

Background: Increasing concerns emerge regarding the limited success in reproducing data and translating research results into applications. This is a major problem for science, society and economy. Driven by industry or scientific networks, several attempts to combat this crisis are initiated. However, only few measures address the applicability and feasibility of implementation of actions into an academic research environment with limited resources. Methods: Here we propose a strategy catalogue aiming for a quality management system suitable for many research labs, on the example of a cell culture focused laboratory. Our proposal is guided by its inexpensiveness and possibility of rapid installation.  For this we used eLabFTW, an electronic lab book, as hub for all other components of our Quality Management System (QMS) and digital storage of lab journals. We introduced Standard Operation Procedures (SOPs) as well as a managed bio bank for safer long-term storage of bio samples. Next, we set up a lab meeting as feedback mechanism for the QMS. Finally, we implemented an automated pipeline to be used for example for drug screens. Results: With this effort we want to reduce individual differences in work techniques, to further improve the quality of our results. Although, just recently established, we can already observe positive outcomes in quality of experimental results, improvements in sample and data storage, stakeholder engagement and even promotion of new scientific discoveries. Conclusions: We believe that our experiences can help to establish a road map to increase value and output of preclinical research in academic labs with limited budget and personnel.


Subject(s)
Computer Systems , Laboratories/organization & administration , Laboratories/standards , Quality Control , Biological Specimen Banks , Cell Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL